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1 INTRODUGTION

ROTEIN classification is a vast domain with enorm-

Ous amount of data available for research and analysis
yet the knowledge

e about its correct perception is very
m;led‘ On the other hand Machine learning (ML) pro-
y - . =

Vide promising answers to not-so-clearly defined areas of
research. .

rarchical way which is much easier o comprehend. A (e
model has a unique ability of taking o account varioys
tput parameters and reaching a goal. [13] [20]

Recent studies indicate that protein function prediction
one of the area where ML faces serious challenyes. (22
Decision tree based prediction

1S very clear and reliable for protein classification. Being

white-box approach it clcarl; illustrates the sc(\lug:c;lu}&o} 2 INTRODUGTION TO WEKA AND OTHER MINING
computations involved at cach and cvery stage. This plus TooLs
point enables its usage by computational experts even with-
out much knowledge of the concerned domain. Likewise, it
enab[es an expert from the concerned domain to critically
examine the steps followed by a computational expert. So it
bridges the gap between technical know-how and domain
cz&penise. Decision tree comprises of nodes and cdges de-
picting various functionalities at different levels of computa-
tions. A decision tree clearly illustrates the required results
Or outputs amongst various outcome possibilities. It clearly
defines the problem structure and its interpretations in a hie-

approach of machine learning

WEKA [18] comes with enhanced capability of dealiny,
with huge databases which other popular data anal .
tool lack. WEKA is a workhorse containing blend ol ool
and calculus for information processing and its detailed
representation with a user friendly GUI which provide
ease of use for a range of computational capabilities 1t 1
highly suitable for a wide range of Rescarch and devel
opment activities.

Factors favoring use of WEKA are:

o Free aceess as it is an open source product
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e User Iriendly GUIL [19]
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LITERATURE SurvEY

Many of i
quen}éeS, tg:n[;rlgl‘uim ?lassiﬁcalion methods based on Se-
PTOtein-Protein ],l:ls) (.S)l.]l(.‘xf, Phylogenomics, Slrucluré
ETation St “L:'DLUOH, Gene expression, Dala lnlc:
ology e pror ;uy use the [eglures extraction melth.-
catior, Strop Show:l:lghon prediction or prolein clasif;-
Sequence yepe oS Tal fca.lurc extraction form protein
& Vector space integration methods of dala

Infegraﬁ
. on for protein claseifients
bioinformatics. protein classification plays vital role in

Jensen, L. et al. (2002
Sequence based meth
Important features fq
function to respectiv
and show the bepe

) foctllsed research on developin

tr)dhwhlch recognizes and combine%.
” ct1 € purpose of assigning prolein
: asses and enzyme classification
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St e They idque.n_ce of amino acids over protein
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Cai, C.

turescfrzo nit]‘al. (2003) use the five physicochemical fea-

van 1;1ear amino acid sequence like normalized

Mool zsia s volume, surface tension, polarity, charge

- gShoe VM-Prf)t method for function classification

By wcase 1ts importance by achieving accuracy of
4% on data set of 49 plants proteins [14].

Friedberg, 1. (2006) expressed that as diversification and
enhancement in the volume of pure sequence and struc-
ture related data is growing, which leads unequal en-
largement in the number of un-characterized gene prod-
ucts. Recently well-known methods for gene as well as for
protein annotation, like homology based transformation,
they are annotating fewer data and in some cases they are
amplifying existing erroneous-annotation. The author
said Contextual and Subjective definitiori of protein func-
tion which is cumbersome in nature and expresses his
views for quality of function predictions [6].

Lobley et al. (2007) predict the protein function with IDRs
(intrinsically disordered regions) in human protein se-
quence on the basis of length and position dependencies.
Sequence based features were used like length, molecular
hydrophobicitys, transmembrane residue,
and disordered related features for
diction through machine learning

weight, charge,
pest region peptide
protein function pre
approach [21].

2007)describes how the protein related

Singh, M. et al. (
lve the

data is increasing.day by day and suggested to so
problem related to human protein function prediction

and sajd
expre
Press the need of machine Jearning algorithm> (

or drug (i

tion a;ﬁr(()li:f::,:,}‘:ry' The author use Decision tre€ ipduc-
best attribyte furrough. C4.5 algorithim for the seice 7 (:i
the accuracy of 7‘;‘"?‘1" function prcdjclion and prcsi::c
tion in confragy N a-"or lfurnan Brozcm furmwn .plrimm
methodology 12] Fllincy O 646 ot KSR PSS
Singh, M. et «'ll" (2011) descri o learning
and cluster analysis ; s ol o
lein clagges Th ‘)'-l!‘i)dmrrum,h prediction eftuaricos: an
ruf(!r('nc(! ('A'”, l,( fll,('[)ijl;(‘ extracted from hl—““dn Pr"t‘ 1
sequencas ‘:v(“' ase (HPRD)Y was used and 5 amino & ‘-
Gtk o ore taken for each molecular class then ~¢
Juence derived features were grabbed for cach protei
St‘quo'nce with the help of web based tools Clustering
technique predicts the class of the query sequence (9]

Wass, M.N et al. (2012) used sequence based features
protein-protein-interaction features as well an gene o%
pression based features and incorporate CombFunc m
thod for protein function prediction. CombFur w42 aist
evaluated for the predictions of gene ontology moleculas
function on the data set of 6686 proteins. The Uni-Prot
GOA annotation’s taken out for the proteins, only 5406
among were used for training, rest used for testing pur
pose. The CombFunc method obtains recall value of 0.6+
and precision of 0.71[11).

Ofer et al. (2015) used the feature extracted technique and
f)ffer the community with hundreds of features of biolug-
ical interpretability and predict localization-structur
classes and its distinctive functional properties [15]. Qing-
tian Gong et al. (2016) describe sequence-based—functlor:
prediction method called GOFDR [16]. GOFDR takes in-
put as query protein sequence, and predicts gene ontolo-
gy terms or features for the query sequence from similar
sequences to the query that are retrieved from a se-
quence-database, key point towards GOFDR 1s that 1t
takes residues that are specific for a particular gene ontol-
ogy term in contrast to gene ontology term to the query
[16]. Sayoni Das et al. (2016) retrieve dalike sequences to
a query from databases using two methods, the first one
is BLAST and other is HMMER3 a hidden Markov Model-
based-tool, and then extracted gene ontology terms from
the retrieved sequences. The key point of their research is
that it considers taxonomy information of sequences [12]
Enrico Lavezzo et al. (2016) reviews sequence and struc-
ture-based function prediction methods with a spotlight
on their protein classification database (CATH-Gene3D,
andFunFHMMer server). Where CATH-Gene3D does
classification of query sequences to the CATH protein-
structural-domain-classification-database and the
FunFHMMer server matches a query sequence with se-
quence present in CATH-Gene3D with incorporation ot
hidden Markov model then predict function of the query

sequence [17].

4 RESEARCH METHODOLOGY

The Methodology used for the research process from data
set collection to results and analysis with trial learning

and testing can be expressed as follow.
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5 RESULTS AND Discussions

The dataset used for analysis is extracted from HPRD[7]
and the 25 features are extracted from 70 sequences which

15 considered as input for analysis through Weka as
shownin Fig 1.
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Fig. 1 Sequence derived Attributes or Features detail with Classes

The contribution of each sequence derived feature with its
maximum and minimum range in protein class prediction
is shown in Fig 2.

The various classification techniques based of Decision
Tree, Rule Mining, Lazy, Bayes Network, Meta and Func-
tions are implemented on the data set. In depth the vari-
ous classification algorithms like Random Forest, J48,
PART, BayesNet, Logistic Approach, IBK and Bagging are
applied on the data set, among them Random Forest out-
perform all of them with achievement of overall accuracy
57.14% shown in Fig 3., and classification accuracy of
97.14% for protein classes as shown in Fig 4.
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Fig. 3.Accuracy comparisons of classifiers
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Fig. 4 Protein class classification accuracy

The 10fold cross validation is done for protein class pre
diction or we can say classification of instances on ran
dom forest method the detailed summary is shown in Fig
5, which shows the mean absolute error is 0.10 % and the
Root mean squared error of 0.21% and describe the detail
of correctly and incorrectly classified instances. It also
showcase complexity — improvement of  -287d0
bits/instance.
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Fig. 8 Cost/Benefit Curve for Protein Class Defensit

Fig. 9 Threshold curve for protein Defensin class

The 25 featured attributes taken for the experimental veri-
fication were solubility, molecular weight, PL, nneg, npos
excl, exc2, instability index, aliphatic index, gravy, t s.
ser, thr, tyr, mean, d, prob, expaa, predhel, ProbN, Ab-
sorbance, IsoelectricPoint and Volume. The Best First and
CfsSubsetEval methods were applied on attribute evalua-
tion. The PI, excl, mean expaa, predhel outperform all ot
the other attribute contribution. They contributed thetr
max for class prediction as well as for decision tree forma-
tion. Their contribution for molecular class prediction 1~
expressed in Fig 10, 11, 12, 13. The decision tree in accor-
dance to the attribute contribution for protein classifica-
tion prediction is shown in Fig 14. The confusion matrix
for random forest classifier on experimental data set- ¢
expressed in Fig 15. This describes the true positive/ neg-
ative and false positive/negative predictions for protein
molecular classes. It demonstrate correctness of the classi-

fication process.
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Fig. 10 Contribution Plot for Molecular classes detection

uf1hng expaa along (X axis) and exclalong (Y axis)

Fig. }1 contribution Plot for Molecular classes detection
using expaa along (X axis) and mean along (Y axis)
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Fig. 12 contribution Plot for Molecular classes detection
using expaa along(X axis) and PI along(Y axis)

Fig. 13 contribution Plot for Molecular classes detection
using expaa along (X axis) and Predhel along (Y axis)
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Fig. 14 Decision tree for Protein class prediction from se-
quence derived attributes or features
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Fig. 15 Confusion matrix for protein classes

6 CONCLUSION

Research gaps suggested the applicability of the machine
learning approach for protein classification and also indi-
cated its weakness in this domain due to very vast-and
versatile data set of the domain. So this critical analysic
clearly indicate how formulation and incorporation of 5
new features enhanced the accuracy of machine learning
algorithm’s classification accuracy for ‘defensin” class to 4
remarkable level of 97% with 90% true positive rate i the
confusion matrix against the combined classification ac-



curacy of 57% on the data set with random forest algo-
rithm and also highlighted the importance of doing, these
S.lcpb at carly stages of Machine Learning implementa-
tion, else the upcoming rescarch resulls buill with ML
approach will be biased and the error will propagate to
further investigations.

This is equally applicable in other research domaing
for scope of improvement in resull obtained from ML by
working on individual components of the classification
problem rather than tackling it all at once.
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